
MATHEMATICS OF COMPUTATION 
VOLUME 53, NUMBER 187 
JULY 1989, PAGES 249-264 

A Fast Algorithm for Rational Interpolation 
Via Orthogonal Polynomials 

By Omer Egecioglu*and Qetin K. Koc,** 

Abstract. A new algorithm for rational interpolation is proposed. Given the data 
set, the algorithm generates a set of orthogonal polynomials by the classical three- 
term recurrence relation and then uses Newton interpolation to find the numerator 
and the denominator polynomials of the rational interpolating function. The number 
of arithmetic operations of the algorithm to find a particular rational interpolant is 
O(N2), where N + 1 is the number of data points. A variant of this algorithm that 
avoids Newton interpolation can be used to construct all rational interpolants using 
only O(N2) arithmetic operations. 

1. Introduction. Let R(m, n) be the set of rational functions of the form 

rm,n(x) = pm(x)/qn(x), where Pm(x) and qn(x) are polynomials of degree m and 
n, respectively. If a set of N + 1 = m+ n+ 1 pairs of points (xi, fi) for 0 < i < N is 
given, then the rational interpolation problem is defined as the task of determining 
a rational function rm,n(x) E R(m, n) such that 

(1.1) rm,n(xi)=fi for 0 < i < N, 

where the xi's are distinct elements. We also assume that the fi's are the values of 
a function f(x) at the nodes xi for all i. 

In the case of polynomial interpolation (i.e., n = 0) it is always possible to 
construct a unique polynomial satisfying (1.1), but this is not true for rational 
interpolation. For fixed m and n, a rational interpolant that satisfies (1.1) at all 
points may not exist, even though it may be possible to satisfy (1.1) on a subset 
of the given point set by means of an r/,v(x) E R(p, v) with p < m and v < n. 
For this particular pair m and n, the point set becomes a degenerate configuration. 
The points (xj, fj) for which 

r,A,v(xj) # fj 

are called the unattainable points. Roughly speaking, the existence of an unattain- 
able point (xj, fj) for 0 < j < N means that xj is a common zero of the numerator 
and the denominator polynomials. Thus a degenerate point set contains one or 
more unattainable points. 

A direct algorithm for rational interpolation solves a set of linear equations 

(1.2) P.(xi)-fiqn(xi) = 0, 0 < i < N, 
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to compute the coefficients of the polynomials pm (x) and q, (x), the oldest method 
being an elegant elimination process due to Jacobi [6, pp. 326-330], [9]. Jacobi's 
method yields exact determinantal formulae for the coefficients of the denominator 
and numerator polynomials. A more recent algorithm by Schneider and Werner 
[10] makes use of the barycentric representation of the rational interpolant. Here 
a set of linear equations of size n is solved by applying Gaussian elimination to 
compute the coefficients of qn(X). 

Direct methods can be computationally inefficient because the solution of a gen- 
eral set of linear equations may require as much as 0(n3) arithmetic operations. 
Jacobi's algorithm, on the other hand, results in a Hankel system of linear equa- 
tions, which in turn can be solved with 0(n2) arithmetic operations. 

We remark that alongside the direct algorithms there exists an array of iterative 
methods to construct rm,n (x), and the reader is referred to [4] for a review of these 
algorithms. 

In this paper we propose a fast direct algorithm for rational interpolation. Given 
the data set (xi, fi) for 0 < i < N, the algorithm first generates a sequence qo(x), 
qi (x),... , qn (x) of orthogonal polynomials on the discrete set { xO, xl, . . ., XN} with 
respect to certain weights. The values of these polynomials at the nodes xi for 
0 < i < N are computed by using the classical three-term recurrence relation sat- 
isfied by orthogonal polynomials. Once the values of a particular polynomial are 
known, its coefficients can be computed easily via Newton interpolation. The last 
orthogonal polynomial qn(x) generated by this algorithm is the required denom- 
inator polynomial of the rational interpolant. Once the denominator polynomial 
q, (x) is determined, the construction of the numerator pm(x) becomes a polyno- 
mial interpolation problem. We prove that the number of arithmetic operations of 
this algorithm to find a particular rational interpolant for given values of m and n 
is O(N2). 

The coefficients of the orthogonal polynomials can also be found without the 
application of the Newton interpolation algorithm. This is again achieved by using 
the three-term recurrence formula. The resulting algorithm requires O(N2) arith- 
metic operations to generate the polynomials qo (x), qi (x), ... , qN (x). If the same 
reasoning is applied to the data (xi, f,-1) for 0 < i < N, the coefficients as well as 
the values of the numerator polynomials po (x), P1(x), . ... , PN(x) can be computed. 
We show that in this way all rational interpolants rm,n (x) with m + n = N and 
0 < n < N can be computed using a total of only O(N2) arithmetic operations 
provided that fi :$ 0 for all 0 < i < N, and the orthogonal polynomials exist. 

The outline of this paper is as follows: In Section 2, we describe the Jacobi 
algorithm for rational interpolation. Section 3 outlines the use of orthogonal poly- 
nomials to compute a particular rational interpolant based on a generalization of 
Jacobi's approach and Newton interpolation. Fast computation of all rational inter- 
polants that avoids Newton interpolation is described in Section 4. This is followed 
by examples for each one of these algorithms in Section 5, and conclusions and 
suggestions for further research in Section 6. 

2. Jacobi Rational Interpolation Algorithm. Let [9(X)]O...N denote the 
Nth divided difference of a function g(x) with respect to the node values xi for 
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O <i < N. Put 

(2.1) w(x) = (x-XO)(X-X1) (x-XN) 

and 
N 

(2.2) Wi = w (xi) = -I (xi-xj) 
j=o 
jii 

By direct application of the Lagrange interpolation formula one has 
N 

(2.3) [g(X)]O N = E 9i 
i=O 

W 

where gi = g(xi). Note that (2.3) gives the leading coefficient of the polynomial 
of degree at most N that takes the values gi at the node points xi for 0 < i < 
N. Clearly, if g(x) is a polynomial of degree strictly less than N, then [9(X)]O...N 

vanishes. 
From (1.2) we can write for any j > 0 

(2.4) Xipm(Xi) = Xi qn(Xi) for 0 < i < N, 
Wi Wi 

and by summing these terms over i we obtain 

z Xqpm (Xii) NXi fi qn (Xi) 
E Wi =E Wi i=O i=O 

Using the definition (2.3) this can be simplified as 

(2.5) [xjPm(X)]0...N = [xif(x)qn(X)]o ...N 

The left-hand side of (2.5) is equal to the Nth divided difference of the polynomial 
xjpm(x). Thus, if j is in the range 0 < j < n - 1, we have 

deg(x3pm(x)) = j + m < n-1 + m = N-1. 

Hence, 

(2.6) [XjPm(X)]0...N = 0 for 0 < j < n -1 

and therefore 

(2.7) [Xjf(X)qn(X)]0...N = O for 0< j < n-1. 

The equation (2.7) allows us to compute the coefficients of qn(x) by solving a set 
of linear equations. Since there are n equations and n + 1 unknowns, one of the 
parameters can be chosen arbitrarily. 

If qn(x) is represented in the standard power basis, 
n 

qn(x) = E bkXk, 
k=O 

then from (2.7) the bk'S satisfy the following linear system of equations 
N N N 3i E n 

~X~f~n(i) =~f2 bkX~= 0 0<j?<n-1, 
i=O i=O k=O 
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which can be put in the form 
n 

(2.8) E hj+kbk = , 0 < j < n-1 
k=O 

where 

(2.9) hs = EZ i, 0 < s < 2n-1. 
i=O 

w 

The system of equations given in (2.8) is a Hankel system. As indicated before, 
we have one degree of freedom in choosing the coefficients of qn(x) in any rational 
interpolation. From now on we will assume that qn(x) is a monic polynomial of 
degree n, that is bn = 1. With this choice, (2.8) can be rewritten as the matrix 
equation 

ho hI h2 hn- hn- bo hn 

hI h2 h3 ... hn+I 

(2.10) h2 h3 4 hn+ b2 = hn+2 

hn-I hn hn+I h2n-2 bn-1 h2n-I 

Therefore, 

ho hI hn-I hn 

hI h2 hn hn+I 

(2.11) qn (x) det(Hn 1) det 

hn-1 hn ... h2n-2 h2n-1 

_1 aX . 1 .. xn-I xn 

where 
[ho hi ... h1 
hi h2 hj+3 

H3 = . . I 

h3 hj+ . h2j 
As it stands, the determinantal formula (2.11) is computationally inefficient to 

construct the denominator polynomial qn(x). However, Trench [12] has provided a 

fast algorithm to solve the Hankel system (2.10) directly. If all of the matrices Ho, 
H1, .-. , Hn-1 are nonsingular, then the number of arithmetic operations to invert 

Hn-1 is proportional to n2. Thus the system in (2.10) can be solved in 0(n2) 

arithmetic operations given the nonsingularity condition on the principle minors of 

Hn-l- 
Note that the existence of the denominator of degree n for rm,n(x) depends 

only on the nonsingularity of the matrix Hn-1 by (2.11). The nonsingularity of 

all the matrices Ho, H1, . .. , Hn-I is thus equivalent to the existence of all of the 

denominator polynomials qo (x), q, (x),. . . q, qn(X). It turns out that this is precisely 

the assumption required on the matrices Ho, H1... , Hn_- for the construction of 

orthogonal polynomials outlined in the next section. 

Once the coefficients of qn (x) are found, we can evaluate qn (x) at all of the node 

points to check if the data set is degenerate for the given values of m and n and 
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thus locate unattainable points. The coefficients of Pm (x) can then be computed by 
performing a polynomial interpolation for the data set (xi, fiqn (xi)) for 0 < i < m. 

To summarize, Jacobi's algorithm for rational interpolation can be carried out 
in the following manner: 

Jacobi Algorithm 
Input: (xi, fi) for 0 < i < N. 
Output: Coefficients of Pm (x) and qn (x) of the rational interpolant rm,n (x). 
Step 1. Compute wi for 0 < i < N using (2.2). 
Step 2. Compute h, for 0 < s < 2n - 1 using (2.9). 
Step 3. Solve the resulting Hankel system by using the Trench algorithm to find 
the coefficients of qn(x) in the standard form. 
Step 4. Check whether or not the data set is degenerate for the given values of m 
and n, i.e., check if qn(xi) = 0 for any 0 < i < N by evaluating qn(x) at all xi and 
thus locating the unattainable points. 
Step 5. Interpolate the data set (xi, fiqn(xi)) for 0 < i < m using the Newton 
interpolation algorithm to find pm (x) in the Newton form. 

Thus we have 

THEOREM 1. Given the data set (xi, fi) for 0 < i < N, the Jacobi algorithm 
computes the coefficients of the rational interpolant rm,n(x) which satisfies (1.1) 
using O(N2) arithmetic operations. 

Proof. We will count the number of arithmetic operations at each step of the 
algorithm. 

In Step 1, wi can be calculated with N subtractions and N-I multiplications for 
any fixed i. For all i = 0, 1 .. ., N this clearly takes O(N2) arithmetic operations. 
In Step 2, first x' is computed for all s = 0, 1, . .. , 2n -1 with 2n -2 multiplications. 
To compute h, we perform N + 1 multiplications, N + 1 divisions and N additions. 
For all s = 0,1, .I. , 2n - 1 this takes O(Nn) operations. Thus Step 2 takes O(N2) 
arithmetic operations. 

The solution of the Hankel system takes 0(n2) arithmetic operations as stated 
earlier. Step 4 consists of evaluating a polynomial of degree n at N + 1 points. 
Hence up to Step 5, the number of operations required is no more than O(N2). 
Finally, in Step 5 we apply the Newton interpolation to construct the polynomial 
Pm(x) which takes 3 m(m + 1) = 0(m2) = 0(N2) operations [5]. Thus the number 
of operations of the Jacobi algorithm add up to O(N2). 0 

It should be noted that Step 3 of the Jacobi algorithm can be carried out with 
0(n2) arithmetic operations without the assumption that the principal minors of 
H_-1 be nonzero (except det(H 1)) by applying an algorithm of Rissanen to solve 
Hankel and Toeplitz systems [8]. Nevertheless, if one is interested in constructing 
all rm,n(x) for m + n = N and 0 < n < N, we see that the construction of all of 
the denominator polynomials qo (x), q, (x), . . . , qn (x) would,require the solution of n 
such systems, resulting in an 0(n3) algorithm. Given the nonsingularity assumption 
on the matrices Ho, H1,... , Hn-I, we can compute all of the polynomials qo(x), 
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qi (x), q,* (x) with a total of 0(n2) arithmetic operations by using orthogonal 
polynomials. This is the subject matter of the next section. 

Alternatively, the process that yielded the coefficients of qn (x) can be repeated 
with the data set (xi, f7-1) for 0 < i < N to construct the coefficients of pm (x). To 
this end, note that (1.2) can be written as 

1 
qn(xi)- -Pm(i) = ?, O < i < N 

provided ft # 0 for all 0 < i < N. By representing pm(x) in its standard form 
m 

Pm(x) = E akXk 
k=O 

and applying the same reasoning as in the Eqs. (2.4) through (2.8), we obtain 
m 

(2.12) Zhl.+kak=0, 0j<j<m-1, 
k=O 

where 
N s 

(2.13) h = xi O < s < 2m- 1. 

Again the system of equations in (2.12) becomes a Hankel system. By assuming 
Pm(x) to be a monic polynomial for the moment, we obtain a system of linear 
equations of size m with the unknowns ao, a, ... , _ similar to (2.10): 

ho hl hl ... h- aO h0 
h' hl hl ... h al h1 

(2.14) h h3 4 m+ a2 = +2 

Lh/ 
- 

hlm h+l h2- am- h2ml 

Since pm (x) and qn (x) cannot be forced to be monic at the same time, we 
need to multiply one of these polynomials with a nonzero constant to make them 
consistent with (1.1). Thus if qn(x) and pm(x) are monic polynomials as solutions 
of the equations (2.10) and (2.14), the corresponding rational interpolant is simply 

(2.15) rm,n(x) - ampm(x) 
qn (X) 

where 
am = foqn (xo) 

assuming that (xo, fo) is an attainable point. If we put 

-h'o hl ... hl 

(2.16) H= [h hL 1+ 

Lhl h'. .. hl 

and use the Trench algorithm to solve (2.14), we see that the matrices H6o Hl,.... 
H' 1 should be nonsingular. 
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Thus, Newton interpolation can be avoided in Step 5 of the Jacobi Algorithm by 
solving another Hankel system to determine Pm (x). Since the number of arithmetic 
operations to solve a Hankel system or to perform a Newton interpolation is the 
same, 0(m2), we see that this approach does not provide any gains in terms of 
number of arithmetic operations. However, we will make use of this idea in Section 
4 to devise an algorithm to construct all rational interpolants using only O(N2) 
arithmetic operations. 

The Jacobi algorithm may have undesirable numerical properties because of the 
stability issues involved in the way the divided differences (i.e., the individual h,'s) 
are calculated. The algorithm proposed by Schneider and Werner in [10] makes 
use of the barycentric representation of the rational interpolant and seems to have 
better numerical properties. On the other hand, there is a trade-off in terms of 
time complexity, since the linear system of equations that arise in this particular 
algorithm has no additional structure to facilitate a reduction in the overall time 
complexity. In particular, the use of Gaussian elimination to solve a general system 
of linear equations, as proposed, requires 0(n3) operations. Thus the number of 
arithmetic operations required by the Schneider-Werner algorithm to compute a 
particular rational interpolant is o(N3) because of this apparent bottleneck, as 
opposed to O(N2) achieved by the Jacobi algorithm. 

3. Rational Interpolation Using Orthogonal Polynomials. Our point 
of departure will be the Jacobi algorithm and we will show that it is possible 
to compute the denominator polynomial qn(x) without solving a system of linear 
equations. 

We start by noting that any polynomial of degree j in xi can be used as a mul- 
tiplier in Eq. (2.4). It follows that (2.5) and (2.7) hold for an arbitrary polynomial 
tj(x) degree j in place of xi. Hence we have 

N 

(3.1) [tj (x) f (x)qn (X)]O ...N = EZ tj(xi)qn (xi) = 0 
i=O W 

for 0 < j n - 1. Set ci = fl/wi for 0 < i < N and define a discrete symmetric 
bilinear form (,.) on the space of polynomials of degree less than or equal to n by 
setting 

N 

(3.2) (tj(X), tk(x)) :E citj(xi)tk(xi). 
i=O 

Using (3.2), the linear system (3.1) can be written as 
N 

(3.3) citj(xi)qn(xi) = (tj(x),(qn()) = 0, 0 < j < n -. 

i=O 

Note that the bilinear form (3.2) does not necessarily define an inner product 
since it is possible to have (tj(x), tj(x)) < 0. For our purposes, however, it suffices 
to assume nondegeneracy, that is, (tj (x), tj(x)) $ 0 for 0 < j < nr. If we require the 
set {to (x), t I(x),... , tn (x) } to be orthogonal with respect to this discrete bilinear 
form, then the nondegeneracy condition together with (3.3) imply that qj (x) is 
a constant multiple of tj(x) for j = O, 1,... , n. In particular, the denominator 
polynomials qo(x), q, (x), . .. , qn(x) are orthogonal with respect to (3.2). 
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The nondegeneracy of the bilinear form (3.2) is in turn guaranteed by the non- 
singularity of the matrices Ho, H1, .. ., H - 1. 

THEOREM 2. There exists a sequence of orthogonal polynomials {to(x), 
ti(X),.. ,tn(X)} on the set {xo,xl,...,XN} with respect to the symmetric bilin- 
ear form 

N 

(tj(X),tk(X)) = >-tj(Xi)tk(Xi) 
i=0 

if and only if the matrices Ho, H1,... , Hn- are all nonsingular. 

Proof. From the general theory of orthogonal polynomials [1], the polynomial 
tj(x) is given explicitly (up to a constant multiple) by the determinant 

- (1, 1) (1,x) ...* (1 xi) 

(X,I1 (xI x) ... (xI xi) 

(3.4) tj(x) = det 

(xj-l 1) (xi-l, X) . .. (xi-l Xi) 
1 x ** X 

Note that 
N 

(xk, Xl) = fi Ik+I hk+1. 
Wi 

Thus the coefficient of xi in tj(x) is precisely the determinant of Hj_i, which has 
to be nonzero. 0 

Since we have assumed that qn (x) is monic, by making use of (3.4) we arrive at 
Jacobi's explicit formula for the denominator polynomials given in (2.11). 

The conventional method for generating orthogonal polynomials is the Gram- 
Schmidt orthogonalization process. However in our case, this approach would re- 
quire 0(n2) inner product operations to generate qn (x). A more efficient technique 
is to use the three-term recurrence relation for orthogonal polynomials to generate 
the values of the polynomials qj (x) directly. With this approach, the total number of 
inner product operations required to compute the values qo (xi), q, (xi),.. qn- 1 (xi) 
for any given point xi becomes only 0(n) [3], [7], [11]. 

More precisely, let {to (x), t1 (x), . . ., tn (x) } be a set of polynomials satisfying the 
orthogonality relationship with respect to the weights ci and the sequence of data 
points xi for 0 < i < N. It is well known that 

(3.5) t(X) = 0, to(X) = 1, 
tj+j(x) = (x - aj)tj(x) - fjtj-i(x), j = , 1, ..., 

where aj and ,3j are constants determined as 

(3.6) j (xtj(x),tj(x)) ' = (t3 (X), tj ()) 
(t3 (X), t3(x))(j-I() j-iW 

Note that the relation (3.5) generates monic orthogonal polynomials, and requires 
only the nondegeneracy of the underlying symmetric bilinear form. 



A FAST ALGORITHM FOR RATIONAL INTERPOLATION 257 

Let T = [Tji] be the (N + 1) x (N + 1) matrix where 

(3.7) Tji = tj(xi), O < i,j < N. 

In other words, the jth row of T consists of the vector of values of the jth orthogonal 
polynomial tj (x) at the nodes xo, X1,..., XN. The following procedure generates 
the first n + 1 rows of the matrix T using the three-term recursion (TTR) in (3.5). 

Procedure TTR. 
Input: n and (xi, fi) for 0< i < N. 
Output: T = [Tji] for 0 < j <rn and 0 < i < N. 
Step 1. Compute wi and ci for 0 < i < N using 

N f 

Wi=fI(xi-xj) and ci= -i 
j=O 
isi 

Step 2. Set Toi = 1 for 0 < i < N, 30 = 0, and compute 

N N 

Yo =Zcixi, 00= Ci, and a YO 
= 

0 
i=o i=O 

Step 3. Set Tii = xi- ao for 0 < i < N, and compute 

N N 

eY = EcixiT,2i, 0=L ciTi2i, and a = 1 01 . 
i=O ~~i=O01 

Step 4. For 1 < j < n - 1 compute 

Tj+,,i= (xi - aj)Tji - fiTj_1,i, 0 < i < N) 
N N 

'Yj+1 = CixiT?1, + = CiT?1,i 
i=o i=O 

aj+l= 1j+1, 0i+1= - __ 

We will denote by T: = TTR(n, xi, fi) the (n + 1) x (N + 1) matrix produced by 
TTR from the input data n and (xi, fi), 0 < i < N. 

LEMMA 1 . Given the data set (xi, fi) for 0 < i < N, and n < N, Procedure 
TTR computes the first n + 1 rows of the matrix T using 

(3.8) 2N2 + lONn + 2N + lOn - 1 = O(N2) 

arithmetic operations. In particular, all rows of T can be computed with 

(3.9) 12N2 + 12N - 1 = O(N2) 

arithmetic operations. 
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Proof. In Step 1 the computation of wi takes 2N - 1 operations for a particular 
value of i. All 0 < i < N takes (N+1)(2N-1) operations. The ci's can be computed 
in N + 1 operations. Hence Step 1 of the procedure takes 2N2 + 2N arithmetic 
operations. The computation of ao in Step 2 takes 3N + 2 arithmetic operations. 
In Step 3, Tli and Tl2i are computed with 2(N + 1) arithmetic operations. Then to 
compute a, and /1 we need to perform 5N + 5 arithmetic operations. Thus Step 
3 takes 7N + 7 operations. In Step 4 for a particular value of j the computation 
of Tj+i,i and T? 1 i takes 5N + 5 arithmetic operations. Then to compute aj+l 
and j+5, SN + 5 operations are needed. For all 1 < j < n - 1, Step 4 takes 
(n - 1)(10N + 10) operations. The result in (3.8) thus follows. To find (3.9) we 
replace n with N in (3.8). 0 

We are now in a position to describe the rational interpolation algorithm via 
orthogonal polynomials and to prove that rational interpolation can be done using 
0(N2) arithmetic operations. The following algorithm first generates the first n+ 1 
rows of the matrix Q = [Qji], where Qji = qj (xi), and then applies the Newton 
interpolation algorithm to find qn(x) and pm(x). 

Algorithm 1. 
Input: (xi, fi) for 0 < i < N. 
Output: Coefficients of pm(x) and qn(x) of the rational interpolant rm,n(x). 
Step 1. Q: = TTR(n, xi, fi). 
Step 2. Interpolate the data set (xi, Qni) for 0 < i < n to compute the coefficients 

of qn(x) in the Newton form by using the Newton interpolation algorithm. 
Step 3. Compute fiQni for all 0 < i < N and then interpolate the data set 

(xi, fiQni) for 0 < i < m to compute the coefficients of pm(x) in the Newton 
form by using the Newton interpolation algorithm. 

THEOREM 3. Given the data set (xi, fi) for 0 < i < N, Algorithm 1 computes 
the coefficients of the rational interpolant rm,n(X) which satisfies (1.1) using 0(N2) 
arithmetic operations. 

Proof. By Lemma 1, Step 1 takes 2N2 + lONn + 2N + lOn - 1 arithmetic opera- 
tions. Step 2 is an interpolation process with n + 1 points. This requires 3 n(n + 1) 
operations [5]. Similarly, in Step 3 we first compute fiQni for all 0 < i < m and 
then perform a polynomial interpolation with m+1 points; hence, m+1+ 3m(m+1) 

arithmetic operations need to be performed in this step. If we sum the number of 
operations at each step we conclude that Algorithm 1 takes 

(3.10) 2N2 + 3 (n2 + m2) + lONn + 2N + 223n +-m = O(N2) 

arithmetic operations. O 

One remarkable property of Algorithm 1 is that it makes it trivial to check 
whether the given data set is degenerate for any values of m and n with m + n = N. 
To check for degeneracy, we compute the values of Qji for all 0 < j < N in 
Step 1. This implies that the input set for the Procedure TTR is N and (xi, fi) 
for 0 < i < N. The number of arithmetic operations to compute all rows Q is 
12N2 + 12N - 1 as given in (3.9). Thus the total number of arithmetic operations 
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of Algorithm 1 increases slightly to 

(3.11) 12N2 + 3(n2 + m2) + 12N + 3n + -m, 

which is still O(N2). This allows us to select a particular value of m and n for 
which the data set is not degenerate while keeping the total number of operations 
within O(N2). 

4. Fast Computation of All Rational Interpolants. Note that it is possible 
to compute the coefficients of the polynomial qn (x) recursively using the three-term 
recurrence formula in (3.5) and thus avoid the Newton interpolation in Step 2 of 
Algorithm 1. This can be done by applying the three-term recursion directly to the 
coefficients of the denominator polynomials. More precisely, let B = [BjkI be the 
(N + 1) x (N + 1) matrix in which the jth row consists of the coefficients of the 
polynomial qj(x), i.e., 

k (4.1) qj(x) = j Bjk,X. 
k=O 

Then B is a lower triangular matrix with unit diagonal whose elements satisfy the 
recursion 

(4.2) Bj+1,k = Bj,k-1 - ajBjk - IjBj-1,k, 0 < k < j < N - 1, 

induced by (3.5). In (4.2) we take 

(4 3) Bj,B, = O for 0 < j < N, 

B(l,k = O for 0 < k < N. 

Thus using this recursion formula we can generate the coefficients of the polyno- 
mials qj (x) for 0 < j < n. The values of the polynomials qj (x) at the node points 
xi (i.e., Qji) are computed at each step to calculate aj and /3j, but this also helps 
to locate the unattainable points if the point set happens to be degenerate for the 
particular values of m and n. 

If only one rational interpolant is needed then, in Step 2 of Algorithm 1, the 
choice between the Newton interpolation algorithm or the application of recurrence 
formula in (4.2) is somewhat arbitrary, since both algorithms will require 0(n2) 
arithmetic operations. For the Newton algorithm, however, the constant in front 
of the order is smaller. 

More importantly, the generation of the coefficients of the polynomials qj(x), 
O < j < n, in 0(n2) arithmetic operations suggests a drastic cut-down on the 
number of arithmetic operations when all rational interpolants rm,n (x) for 0 < n < 
N with m = N - n are computed. We note that for 0 < j < N the coefficients 
of the polynomials pj(x) can also be computed similarly by applying the recursion 
in (4.2) to the data (xi, fJ-1) for 0 < i < N, as we already remarked at the end of 
Section 2. This is possible provided fi # 0 for 0 < i < N and HO, HI, ...,N-1 

are nonsingular. This given, define A = [Ajk] and P = [Pij] to be (N + 1) x (N + 1) 
matrices where the jth row of A contains the coefficients of the polynomial pj(x), 

3 

(4.4) pj (X) = ZAjkXkX 
k=O 
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and the jth row of P contains the values of the polynomial pj (x) at the nodes xi 

pji = Pj (xi), O < i, j < N, 

similar to the matrices B and Q. 
The following algorithm first generates the values and the coefficients of the 

polynomials qj (x) for all 0 < j < N. The algorithm then proceeds to generate the 
values and the coefficients of the polynomials pj(x) for 0 < j < N by applying the 
same technique to the data (xi, fi-1) for 0 < i < N. 

Algorithm 2. 
Input: (xi, fi) for O < i < N. 
Output: Coefficients of pm (x) and qn (X) for 0 < n < N and m = N - n. 
Step 1. Q := TTR(N, xi, fi). 
Step 2. Set Bjj = lforO <j < N and Bjk =OforO <j < k <N. Set B1o =-a0o. 

For all 0 < k < j < N - 1 compute 

Bj+l,k = Bj,k-1 -a3Bk - /3jBj-l,k. 

Step 3. Compute fi-1 for 0 < i < N and P := TTR(N, xi, fi-1). 
Step 4. Set Ajj = l for O <j < N and Ajk = O for O < j <k < N. Set A10 =-aco. 

For all 0 < k < j < N - 1 compute 

Aj+1,k = Aj,k-1 -ajAjk -jAj-l,k 

Step 5. Update the coefficients of pj(x) according to (2.15): 

Ajk = foQN-j,0Aik 0? < k < j < N. 

At the end of Algorithm 2, the coefficients of the polynomials pm (x) and qn (X) 
are Amk and Bnk, respectively, for 0 < k < N. Note that Amk = 0 for k > m and 

Bnk = 0 for k > n. 

THEOREM 4. Algorithm 2 computes all rational interpolants rm,n (x) for 
n + m = N and n = 0,1,... , N using O(N2) arithmetic operations provided the 
matrices HO, Hl,..., HN-1 and HO, H, ... ., HN-1 are nonsingular. 

Proof. As we showed in Theorem 2, the orthogonal polynomials qo (x), q, (x), ... 
qN(x) can be constructed if and only if the matrices HO, H1,...,HN-1 are all 
nonsingular. By applying the same technique to the data (xi, f7-1) for 0 < i < N, 
we conclude that the polynomials po (x), Pt (X),... , PN (X) can be constructed if the 
matrices HO, HI, . . . , HN-1 are all nonsingular and if fi :0 O for all 0 < i < N. 

To compute the number of arithmetic operations required for Algorithm 2 we 
count the operations at each step. Step 1 takes 12N2+12N-1 arithmetic operations 
by Lemma 1. Also Step 3 will take N + 1 + 12N2 + 12N - 1 arithmetic operations. 
For each of Step 2 and 4 notice that the recursion in (4.2) requires N=?' Ejk=0 4 - 

2N2 + 2N - 4 arithmetic operations. Also in Step 5 only the lower triangular part 
of the matrix A is updated which results in 

N-1 N 41 7 
2N +2+ N 2 2+ N + 3 

j=1 k=0 
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arithmetic operations. Thus Algorithm 2 requires a total of 

(4 5) 53 N2 + 61N _N6=O(N2) 
(4.5) ~~ ~~~2 2 

arithmetic operations to compute all rational interpolants. O 

5. Examples. The algorithms have been implemented on a VAX-11/780 com- 
puter running Unix 4.2 BSD, using the Pascal programming language. Even though 
we have not yet conducted a detailed experimental study of the numerical prop- 
erties of these algorithms, we present computer generated solutions to two simple 
interpolation problems. 

Example 1 (Algorithm 1). Given f(x) = xl, find r2,2(x) which interpolates f(x) 
at the node points -1, -0.5, 0, 0.5, 1. We apply Step 1 of Algorithm 1 to the data 
and obtain the following Q matrix of size (5 x 5): 

1.00 1.00 1.00 1.00 1.00 
- 1.00 - 0.50 0.00 0.50 1.00 

Q= 1.50 0.75 0.50 0.75 0.75 
0.75 0.75 0.00 - 0.75 - 0.75 
0.00 0.00 0.25 0.00 0.00 

The rows of the matrix Q are the values of the denominator polynomials qj (x) at 
the nodes xi for 0 < i, j < 4. As mentioned before, if Qrti = 0 for an i then 
the point (xi, fi) is an unattainable point for the (m, n) pair. An inspection of all 
entries in Q gives the following result: 

m n unattainable points 
4 0 none 
3 1 (0,0) 
2 2 none 
1 3 (0,0) 
0 4 all points except (0,0) 

The rational interpolant r2,2(x) interpolates f(x) at all points. In order to deter- 
mine q2(x), we use the Newton interpolation algorithm. The values of the polyno- 
mial q2 (x) at the node points are seen from the third row to be 

q2(-1) = 1.50, q2(-0.5) = 0.75, q2(0) = 0.50, q2(0.5) = 0.75, q2(1) = 0.75. 

Since three points are necessary and sufficient to determine the coefficients of q2 (x), 
we choose the first three points: (-1, 1.50) (-0.5, 0.75), (0,0, 0.5), and find 
q2 (x) - x2 +0.5. In order to determine the coefficients of the numerator polynomial, 
first we compute 

foQ20 = 1.50, flQ21 = 0.375, f2Q22 = 0.00 

and then apply Newton interpolation to the data (-1, 1.50), (-0.5, 0.375), (0, 0.00) 
to find the numerator polynomial P2(x) = 1.50x2. Thus, 

r2,2 (x) = p2 (x) = 1.50X2 

q2 (x) - x205 
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Here we note that since f2 = 0, Algorithm 2 cannot be applied to find all rational 
interpolants for this problem. 

Example 2 (Algorithm 2). Given f(x) = 2X, find all rational interpolants of 
f (x) at the node points -2, -1, 0, 1, 2. The application of Step 1 and Step 2 of 
Algorithm 2 to this data set produces the following Q and B matrices: 

- 1 1 1 1 1- 
-8 -7 -6 -5 -4 

Q= 48 36 26 18 12 
-192 - 120 - 72 - 42 -24 

384 192 96 48 24 
- 1 0 0 0 0 

-6 1 0 0 0 
B= 26 -9 1 0 0 

-72 38 -9 1 0 
96 -66 23 -6 1 

Thus we observe that for this interpolation problem all points are attainable for all 
(i, n) pairs. The elements of B are the coefficients of the denominator polynomials 
qj (x) for 0 < j < 4. In other words, the entries in the first column are the coefficient 
of x0 in qj (x), the entries in the next column are the coefficient of x, and so on. 
The unit diagonal entries correspond to the coefficient of the leading term xi in 

qj(x). 
Similarly, the application of Steps 3, 4 and 5 of Algorithm 2 produces the coef- 

ficients of the numerator polynomials, namely the A matrix: 

- 96 0 0 0 0o 
-72 -12 0 0 0 

A= 26 9 1 0 0 
-6 1l9 3 1 0 6 4 12 

1 11 23 1 1 16 96 16 96- 

Hence the rational interpolants are found to be 

Po (x) _96 

q4 (X) - X4-6x3 + 23X2 - 66x + 96' 

pi(x) 12x + 72 

r1,3kx) 
= 

q3(x) -x3 + 9x2-38x + 72' 

r2,2(x' = P2(x) = x +9x +26 
q2 (X) -2 x-9x +26' 

r3, X p3(x) x3 + 9x2 + 38x + 72 
r3,l(X) = q, (x) -12x + 72 

r,(x) =p4 (x) X 4 + 6x3 + 23X2 + 66x + 96 

qo (x) 96 

6. Summary and Conclusions. We have described two algorithms for ra- 
tional interpolation. Given that the Hankel matrices Ho, Hl,... , HN_ 1 are all 
nonsingular, the first one of these algorithms (Algorithm 1) generates orthogonal 
polynomials qo (x), ql (x), . .. , qN (x) which are the monic denominator polynomials 
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of the associated rational interpolants. If the computation of the corresponding nu- 
merator polynomials are then carried out by Newton interpolation, then the number 
of arithmetic operations required becomes o(N3). However, if the corresponding 
matrices HO, H', ... , HN-1 for the numerators are also nonsingular, then Newton 
interpolation can be avoided, and all rational interpolants can be found with only 
O(N2) arithmetic operations. This is the content of Algorithm 2. 

Note that in case a particular matrix Hjpl happens to be singular, then it is no 
longer possible to continue the generation of the denominator polynomials qj (x), 

qj+i (x), -.. , qN (x) by using the three-term recursion, as the necessary condition 
for the existence of the desired orthogonal family of polynomials is not satisfied. 
Thus, if the discrete symmetric bilinear form we are interested in happens to be 
degenerate, it is not clear how to proceed with the method of orthogonal poly- 
nomials to generate the rest of the rational interpolants. At this point, however, 
the remaining denominator polynomials can be computed individually by repeated 
application of Rissanen's algorithm at a cost of O(N2) operations each. Similarly, 
the singularity of a matrix H' associated with a numerator polynomial puts a 
limit on the applicability and the operating range of Algorithm 2. Nevertheless, it 
is possible to combine these two approaches for a hybrid algorithm whose running 
time is guaranteed to be no worse than the existing algorithms for rational inter- 
polation. In addition, both Algorithm 1 and Algorithm 2 provide simple provisions 
to check for degeneracy of the interpolation problem at hand. 

Although the proposed algorithms are fast, an extensive analysis of their prac- 
ticality in terms of numerical stability has not yet been carried out. It should be 
noted however, that both Algorithm 1 and Algorithm 2 can be parallelized on ei- 
ther shared-memory or message-passing multiprocessor models. This aspect of the 
algorithms will be reported elsewhere [2]. 
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